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Abstract: 

Great hammerhead sharks Sphyrna mokarran are the largest member of Sphyrnidae, yet the 

roles of these large sharks in the food webs of coastal ecosystems are still poorly understood. 

Here we obtained samples of muscle, liver and vertebrae from large S. mokarran (234–383 

cm total length; LT) caught as by-catch off eastern Australia and used stable-isotope analyses 

of ẟ
15

N, ẟ
13

C and ẟ
34

S to infer their resource use and any associated ontogenetic patterns. The 

results indicated large S. mokarran are apex predators primarily relying on other sharks and 

rays for their diet, with a preference for benthic resources such as Australian cownose rays 

Rhinoperon neglecta during the austral summer. Teleosts, cephalopods and crustaceans were 

not significant components of S. mokarran diets, though some conspecifics appeared to rely 

on more diverse resources over the austral summer. Ontogenetic shifts in resource use were 

detected but trajectories of the increases in trophic level varied among individuals. Most S. 

mokarran had non-linear trajectories in ontogenetic resource-use shifts implying size was not 

the main explanatory factor. Stable isotope values of ẟ
13

C and ẟ
34

S in muscle suggest S. 

mokarran span coastal, pelagic and benthic food webs in eastern Australia.  
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1 | INTRODUCTION 

The great hammerhead shark Sphyrna mokarran (Rüppell 1837) is the largest of ten Sphyrnid 

species, reaching total lengths (LT) > 4.5 m (Last & Stevens, 2009). Like its congeners, S. 

mokarran is highly ecologically specialised, which renders it extinction prone in the face of 

selective pressures (Gallagher et al., 2014c). As a result of anthropogenic activities, the great 
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hammerhead is classified as Endangered on the IUCN red list (Camhi et al., 2009) throughout 

its cosmopolitan tropic–temperate distribution (Hammerschlag et al., 2011; Pérez-Jiménez, 

2014), with fishery-induced population declines > 90% in some areas (Roff et al., 2018). 

Sphyrna mokarran is also listed Vulnerable in New South Wales waters, although the 

regional population size remains uncertain. Declines in the populations of this species reflect 

demand for their fins, which are among the more highly valued on Asian markets 

(Abercrombie et al., 2005; Harry et al., 2011) and high by-catch rates in pelagic longline 

fisheries (Gallagher et al., 2014a). Off eastern Australia, the species is also taken as bycatch 

in bather-protection programmes involving gillnets and drumlines (Reid et al., 2011; Roff et 

al., 2018). Owing to their obligate ram-ventilating respiration (Dapp et al., 2016) and 

pronounced capture-stress response (Gallagher et al., 2014b; Jerome et al., 2017), S. 

mokarran also incurs very high discard mortality (Morgan & Carlson, 2010; Gulak et al., 

2015).  

Historically sustained and wide-ranging fishing pressure on great hammerhead 

populations have led to their subsequent protection across many jurisdictions (e.g., included 

in Appendix II of the Convention on International Trade in Endangered Species; 

www.cites.org). Nevertheless, their biology and ecology remain poorly understood. In 

particular, knowledge on the diets and trophic ecology of great hammerheads is primarily a 

result of descriptive observations of predation events in situ, which suggest they probably 

mostly feed on rays (Cliff, 1995; Chapman & Gruber, 2002), but also consume teleosts and 

infrequently, larger sharks, including carcharhinids (Mourier et al., 2013; Roemer et al., 

2016). Gut-content analyses for great hammerheads caught in the South African bather-

protection gillnets suggest that, unlike for their other congeners Sphyrna lewini (Griffith & 

Smith 1834) and Sphyrna zygaena (L. 1758), cephalopods do not appear to be a significant 

dietary component (Smale & Cliff, 1998). Notwithstanding the above, a recent review by 
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Gallagher and Klimley (2018) suggested our understanding of great hammerhead diet and 

trophic ecology is ‘fair’ and requires further examination.  

Research on elasmobranch trophic ecology has largely moved away from exclusive 

gut-content analyses towards including multiple dietary indicators (Park et al., 2019). In part, 

DNA analyses has superseded macro and micro gut-content analyses owing to its higher 

sensitivity to species diversity (Jarman & Wilson, 2004; Dunn et al., 2010). However, in 

terms of holistically examining trophic relationships and food-web connectivity, stable-

isotope analysis (SIA) is more common (Carlisle & Starr, 2009; Carlisle et al., 2015; Bird et 

al., 2018). Typically, SIA relies on isotopes of nitrogen (
15

N) and carbon (
13

C) to examine 

patterns of ontogenetic change (Raoult et al., 2015) or source contributions to diets 

(Tamburin et al., 2019). Although of considerable utility, determining only two elemental 

tracers can limit the reliability of models and the number of sources that can be examined 

within a given model (Parnell et al., 2010; Parnell et al., 2013; Phillips et al., 2014). Sulphur 

stable isotopes (S
34

) have been used in the past for food-web modelling (Connolly et al., 

2004) and separating pelagic and benthic food webs (Hobson, 1999; Curnick et al., 2019) and 

have been highlighted as a potential tracer for elasmobranch research (Hussey et al., 2012). 

Unlike for 
15

N and 
13

C, 
34

S stable isotopes are not affected by trophic enrichment that 

complicates mixing model analyses (McCutchan et al., 2003). However, owing primarily to 

their greater analytical costs, S
34

stable isotopes are rarely used in food-web studies.  

Examining the potential contribution of prey items to the diets of great hammerheads 

with 
15

N, 
13

C and 
34

S stable isotopes may facilitate more accurately evaluating their resource 

use in coastal food webs. As in many elasmobranch species, trophic levels among 

populations of great hammerheads are likely to increase with body size: fishes and sharks 

with larger gape sizes tend to feed on larger organisms, which themselves are more likely to 

be at higher trophic levels (Mihalitsis & Bellwood, 2017; Hammerschlag, 2019). Greater 
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biophysical rigidity in jaw structure comes with increased size (Ferrara et al., 2011) and the 

associated greater mobility and strength also allow capture of larger prey (Lowe, 2002). 

However, studies examining trophic ecology often only obtain single time-point samples 

from individual animals, which can mask behaviourally driven individual patterns in 

ontogenetic niche shifts. There are inter and intra-specific differences in ontogenetic patterns 

in resource use among elasmobranchs (Kim et al., 2012b; Matich et al., 2019) and these can 

indicate coupling or compartmentalising of food webs (Matich et al., 2011). While 

determining the ecological effects of sharks and rays on fish communities from dietary data 

alone may underestimate top-down effects (Hammerschlag, 2019), resource use information 

on great hammerheads could help guide future behavioural assessments and identify potential 

prey groups of interest. Intra-specific ontogenetic patterns in resource use have not been 

studied in great hammerheads, nor have their behaviour or movement patterns in eastern 

Australia. Without this information their resource use in coastal ecosystems across their size 

ranges remains unknown. 

Considering the above, the objective of this study was to assess the resource use of 

great hammerheads in coastal food webs, including any changes across life stages. 

Specifically, the aim was to use SIA to examine the relative dietary importance of rays, 

sharks and teleosts and any temporal variation, among specimens of great hammerheads 

opportunistically sampled as by-catch from bather-protection gillnets deployed off eastern 

Australia during the austral summer/autumn.  

 

2 | MATERIALS and METHODS 

 

All samples obtained from this study were from commercial fisheries or as by-catch from 

government-mandated bather-protection programmes. No animals were killed directly for the 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



purpose of this experiment and their collection was covered by appropriate animal care and 

ethics permits through the NSW Animal and Ethics Committee permit number 08/06. 

 

2.1 | Sample collection 

 

Great hammerheads (n = 25 from Ballina–Evans head; 28.77° S, 153.60° E to 29.10° S; 

153.44° E and n = 3 from Newcastle 31.25°S, 146.92°E) were caught (and had died) in 

gillnets deployed during the austral summer–autumn (November–May) between 2015 and 

2018 off New South Wales (31.25° S, 146.92° E), south-eastern Australia as part of 

government-sanctioned bather-protection programmes. All gillnets were 150 m long and 4 or 

6 m deep, comprising polyethylene meshes with stretched mesh openings of either 600 or 800 

mm and were fished at up to 2 m below the surface in 5–13 m of water. Each gillnet was 

typically checked every 12–72 h. 

Selected species of various taxa representing most trophic niches (and possible great 

hammerhead prey) off south-eastern Australia were concurrently collected from the bather-

protection nets and also local fisheries off Ballina and Evans Head near where most great 

hammerheads were caught. These species included blacktip shark Carcharhinus limbatus 

(Valenciennes 1839) (n = 7, large carcharhinid), Carcharhinus obscurus (LeSueur 1818) (n 

= 11, neonates representative of juvenile sharks), Carcharhinus brachyurus (Günther 1870) 

(n = 2, large sub-tropical and temperate carcharhinid) and Rhinoptera neglecta Ogilby 1912 

(n = 8, batoid). Other species, including Nototodarus gouldi (n = 9, cephalopod), snapper 

Chrysophrys auratus (Forster 1801) (n = 6, large teleost) and Melicertus plebejus (n = 7, 

small crustacean) were obtained from other NSW commercial fisheries.  

Immediately following collection, all specimens were frozen at –20°C until 

processing. Thawed fishes and rays were measured for total length (LT) or disc width (WD) 
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and sexed. Approximately 1 cm
3
 of tissue from livers and muscle were excised from each 

great hammerhead and 1 cm
3
 of muscle tissue excised from all other species. Tissue samples 

were placed in a drying oven at 60°C for at least 48 h and maintained desiccated until isotope 

processing. Vertebrae were excised (from 20 individual great hammerheads) anterior to the 

first dorsal fin and refrozen prior to ageing and additional tissue extraction. 

 

2.2 | Ageing and vertebral-tissue extraction 

 

Isolated vertebrae (n = 20) were thawed and cleaned with a scalpel to remove excess 

connective tissue. Vertebrae were placed onto an Isomet diamond-blade saw (Buehler; 

www.buehler.com) and a c. 0.6-mm anterior–posterior cross-section was obtained from each 

vertebral centrum. Immediately adjacent to the vertebral sections, a Dremel tool 

(www.dremel.com) with an engraving bit was used to obtain powdered cartilaginous material 

in layers moving away from the vertebral centra. This process resulted in c. 3–5 tissue 

samples per vertebra (Figure 1). The rationale behind the Dremel-sampling method was to 

obtain tissue for SIA that would represent the diet and trophic ecology of the individual over 

periods indicative of ontogenetic patterns, since vertebral size is more strongly related to girth 

than age (Natanson et al., 2018). This approach also aimed to produce additional tissue for 

sulphur isotope analysis (c. 9 mg of dried tissue). The distance from the centre of each layer 

to the vertebral centrum was then measured (nearest 1 mm) using Vernier callipers.  

Vertebral sections were immersed in saline on petri dishes and digital images taken 

under a dissection microscope (×10 magnification). The relationship between vertebral-band 

pairs and age has been validated for this species off eastern Australia (Harry et al., 2011), so 

age validation was not deemed necessary. Vertebral-section images were aged by counting 
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pairs of translucent and opaque bands on the corpus calcareum by two researchers who 

agreed on locations of band pairs.  

 

2. 3 | Stable-isotope analyses 

 

To remove inorganic carbon that could affect SIA, powdered vertebral samples were placed 

in 5 ml of EDTA solution at 0.5 M for 1 week, or until gelatinised. The EDTA was preferred 

over HCl because it was less likely to dissolve the sample and preserving material for 
34

S 

analysis was critical. Once the process was complete, samples were rinsed three times with 

de-ionised water before being placed into a drying oven at 60°C for 48 h. Residual tissue 

from these samples were insufficient for 
34

S SIA analysis (< 9 mg). 

Urea and lipids are known to affect ẟ
13

C and ẟ
15

N stable-isotope values in 

elasmobranchs (Carlisle et al., 2016; Li et al., 2016; Shipley et al., 2017), so all great 

hammerhead tissues had lipid and urea extractions for subsequent 
13

C and 
15

N SIA. However, 

unlike for 
13

C and 
15

N, the effects of lipid and urea extraction on 
34

S in elasmobranch and 

teleost tissues are not understood because both lipids and liver tissue contain sulphur, so 

additional samples of non-lipid or urea-extracted tissues were used for 
34

S SIA. Dried tissues 

were first ground to a fine powder using a Retsch MM200 ball mill (ww.retsch.com). Lipids 

were extracted using a 2:1 chloroform:methanol solution. Samples were individually placed 

into centrifuge tubes, exposed to 5 ml of solution for 30 min and centrifuged for 90 s at 350g 

before removing the supernatant. The pellet was vortexed and re-exposed to the 2:1 

chloroform:methanol solution and the process repeated at least three times or until the 

solution remained clear, indicating all lipids had been removed (Medeiros et al., 2015). 

Lipid-extracted tissues were then left overnight in a fume hood to evaporate all solvents. To 

extract urea, lipid-extracted samples were rinsed overnight with de-ionised water and the 
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process repeated three times. Once extractions were complete, samples were oven dried at 

60°C.  

Approximately 9 mg each of dried muscle and liver tissues of great hammerheads and 

muscle tissue from the other species were weighed into plastic vials. Lipid and urea-extracted 

tissue and vertebra samples were weighed into 1–2 mg pellets and placed into tin capsules. 

All samples were processed at Griffith University Stable Isotope Laboratory in Brisbane, 

Queensland, Australia. Stable isotope values were determined with a Europa EA GSL 

Elemental analyser (Europa Scientific Inc., Cincinnati OH) coupled to a Hydra 20-22 

automated Isoprime isotope ratio mass spectrometer (Sercon Ltd.; www.serconlimited.com). 

Ten standards were run with each tray, which were Pee Dee belemnite (for 
13

C), atmospheric 

nitrogen (for 
15

N) and Vienna-Canyon diablo troilite (for 
34

S). The SD for measurements of 

standards was 0–0.2‰ for ẟ
13

C, 0.1‰ for ẟ
15

N and 0.3–0.7‰ for ẟ
34

S. 

 

2.4 | Data analyses 

 

Urea-extracted tissues can be reliably mathematically lipid-corrected (Carlisle et al., 2016), 

enabling examination of C:N ratios. Since all great hammer head samples were lipid and 

urea-extracted, all tissues should not require any mathematical corrections. However, despite 

following the lipid-extraction protocol (rinsing until chloroform:methanol solution was clear) 

C:N ratios suggested some lipids remained in some liver samples, which can affect ẟ
13

C 

values due to their higher carbon content (Carlisle et al., 2016). Since urea was extracted, the 

liver samples with C:N >3.4 were mathematically corrected for lipids following Post et al. 

(2007). Samples with < 0.1% 
34

S by mass were also excluded from analyses because they 

would be at the detection limits of the elemental analyser. All vertebral samples had C:N 

ratios < 3.1, suggesting all inorganic carbon was removed and no corrections were necessary.  
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To assess any ontogenetic patterns in trophic level that can be inferred from ẟ
15

N 

values (Hesslein et al., 1991), vertebral stable-isotope values were analysed with a 

generalized additive model (GAM) using the mgcv package (Wood & Wood, 2015) in R 

(www.r-project.org). Isotope values were set as the response variable, distance from vertebral 

centra as a smoothed determinant variable and individual sharks as an interaction factor 

within the smoothed variable and also as a separate non-smoothed fixed factor to account for 

differences in initial stable-isotope values. Since individual sharks with only three sampling 

points along vertebrae were likely to create less-accurate models with wider confidence 

intervals that would not separate groups as effectively, the four sharks in this category were 

not included in the analyses to produce models with higher explained deviance (total n = 16). 

Because the minimum number of points for each individual was four, the GAM was fitted 

using quadratic smoothing functions (k = 4). The same model was run for ẟ
13

C and ẟ
15

N 

values.  

To enable pairwise comparisons of the slopes of the ontogenetic stable-isotope values 

between different sharks, we calculated the difference in smoothed parameters between each 

successive pair using the model above and a predicted set of 400 values evenly distributed 

from 3 to 20 mm (the approximate range of vertebral centra distances from which samples 

were taken) and a custom loop and function with an approach based on Rose et al. (2012). 

Where pairwise differences and 95% CI excluded zero, we inferred significant differences 

between pairs of sharks. Pairs identified as significantly different from each other were 

recorded in a pairwise matrix to identify the groups of sharks that were the most 

differentiated (e.g., starting with the groups with smallest number of non-significant pairs). 

Once the combination of successive groups contained all sharks, no more groups were 

created.  
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Stable-isotope values can vary across different tissue types in sharks (Hussey et al., 

2010; Kim et al., 2012a) and liver tissues are known to have different tissue-specific 

enrichment relative to muscle tissues. To correct for these differences and make patterns in 

muscle isotope values directly comparable with those obtained from liver tissue, liver ẟ
13

C 

and ẟ
15

N values were increased by 0.68 and 0.82, respectively; these values correspond to the 

difference between mean lipid-extracted liver tissue stable-isotope values and mean values 

for lipid-extracted shark muscle (Hussey et al., 2010). Tissue-discrimination patterns for ẟ
34

S 

remain largely unknown in elasmobranchs; however these are generally perceived not to 

change with trophic level (McCutchan et al., 2003; Hussey et al., 2011a) so no 

transformations were performed for ẟ
34

S stable-isotope values. 

Prior to running Bayesian stable-isotope mixing models, reducing the number of 

possible sources can reduce noise and inaccuracies in the results (Parnell et al., 2010; Stock 

et al., 2018). Since we had isotopic data on three dimensions (each isotope tracer) that were 

not independent from each other for each potential source, a pairwise permutational analysis 

of variance (PERMANOVA) was run using the vegan package in R using the pairwise.adonis 

function in R (Dixon, 2003). This PERMANOVA compared the stable-isotope values of each 

potential source (prey type) with 9999 of permutations and Bonferroni adjustment. 

Bonferroni adjustment is perceived as one of the more conservative P-value transformations 

(Narum, 2006) and would thus be most likely to result in grouping sources and produce 

conservative results. The isotope values of all sources were found to be significantly different 

from each other (Supporting Information Table S1), except for C. brachyurus, which was not 

significantly different to all sources. Since only two samples from this species were available 

and merging these values with other sources that have very different diets or lifestyle (e.g., 

cephalopods or crustaceans), we chose to remove C. brachyurus from subsequent analyses. 

While the total number of sources was therefore six, still two greater than the n + 1 tracers 
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recommended by Parnell et al. (2010), removing additional sources would have potentially 

violated an assumption from Bayesian stable-isotope mixing models; i.e.,: all possible 

sources are included. There is evidence from previous work (outlined in the §1) that all the 

prey items included here are eaten by great hammerheads. Owing to the relatively high 

number of sources, the mixing model would thus likely have difficulty separating sources 

with lower contribution but should still identify the main resources used by great 

hammerheads. The total number of sources is still lower than the > seven recommended 

upper limit outlined in Stock et al. (2018). 

To determine the contribution of the sampled prey items to the short-term (liver) and 

long-term (muscle) diets of great hammerheads, ẟ
13

C, ẟ
15

N and ẟ
34

S values were analysed 

with a Bayesian mixing model using the MixSIAR package in R (Stock et al., 2018). Tissue 

type (muscle or liver) was used as a fixed factor to differentiate temporal contributions to 

diets. Muscle is generally considered to have approximately annual turnover rates, especially 

in adults likely to have slower growth rates (Malpica-Cruz et al., 2012), while liver tissue has 

turnover rates roughly half that of muscle (Madigan et al., 2012). Discrimination factors for 

great hammerhead samples from their potential sources of diet were set at 0.9 ± 0.43 for ẟ
13

C, 

2.29 ± 0.32 for ẟ
15

N as per Hussey et al. (2010) and with the added measurement error from 

the spectrometer determined from the standards. There is no trophic enrichment for 
34

S 

(McCutchan et al., 2003) so the discrimination value was left at 0, but an SD = 0.5 was added 

as a precaution to reflect measurement error from the spectrometer and uncertainty around 

trophic fractionation. No concentration dependencies were set. Model run length was set to 

very long to assure Gelman and Geweke diagnostics were within acceptable ranges as 

explained in Stock et al. (2018). All analyses were conducted in R version 3.4.4. 
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3 | RESULTS 

 

All vertebrae from the 20 assessed great hammerheads were successfully aged. The largest 

and smallest sharks were both males at 383 and 234 cm LT and 39 and 12 years old, 

respectively (Figure 2). Because Harry et al. (2011) proposed a 50% LT at maturity for great 

hammerheads at c. 220 cm LT and 8.6 years all specimens here were likely to be mature.  

Significant relationships between ẟ
13

C and ẟ
15

N values arose from vertebral tissues 

and distance from vertebral centra, indicating ontogenetic changes in resource use (Table 1). 

Specifically, ẟ
15

N values generally increased over time, while ẟ
13

C values were more stable 

(Figure 3). Six significantly different patterns in individual specialisation across ontogeny 

were identified among all individuals examined. The ẟ
15

N values suggest some individuals 

had exponential increases in trophic level with increasing size (n = 4), while others had linear 

(n = 3) or logarithmic (n = 3) ontogenetic patterns ((Figure 4). In comparison, ẟ
13

C values 

were generally consistent across ontogeny. The variability between individuals at a given 

stage of ontogeny reached 3.6 and 3.2‰ for ẟ
15

N and ẟ
13

C values, but the range of change in 

individuals for ẟ
15

N values was on average double that of ẟ
13

C values (mean ± SD of 2.2 ±0.7 

and 1.0 ± 0.6‰, respectively). 

Once corrected for trophic enrichment, the stable-isotope values of ẟ
13

C, ẟ
15

N and 

ẟ
34

S of great hammerhead tissues were generally within the isoscape produced by the stable-

isotope values of the potential sources included here, meeting the assumption that Bayesian 

isotope mixing models should not be outside the isoscape (Phillips et al., 2014; Stock et al., 

2018). Great hammerhead liver tissues were more depleted in 
13

C and 
15

N than muscle tissues 

from the same individuals and the ẟ
34

S values of liver tissues were more variable than those 

of muscle tissues (Figure 5).  
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Among the other assessed species, M. plebejus (eastern king prawn) were at the 

lowest trophic level (ẟ
15

N value) while blacktip shark was at the highest trophic level, 

excluding the uncorrected values of great hammerheads. Relative to the vertebrae samples 

above (taking the samples furthest from the vertebral centra and most likely to be equivalent 

to muscle tissue), muscle tissues were enriched in 
15

N (mean Δ
15

N = 2.38) and depleted in 

13
C (mean Δ

13
C = –2.25).  

Bayesian mixing models suggest Australian cownose ray and blacktip shark were the 

dominant type of resources over the year preceding sampling, with mean (± S.D.) estimated 

contributions of 0.11 ± 0.13 and 0.40 ± 0.07, respectively. When examining liver tissues, 

indicative of shorter-term (< 6 months) diet, models suggested Australian cownose ray or 

similar rays were the dominant resource (mean ± SD contribution 0.53 ± 0.17). Australian 

cownose ray contribution for liver tissues was greater than in muscle, suggesting that during 

the preceding austral summer this type of prey (benthic elasmobranch) was the main resource 

for great hammerheads (Figure 6). The distribution of Australian cownose ray for liver tissues 

was slightly bimodal, suggesting a small subset of the population sampled fed on more 

diverse resources including teleosts and cephalopods. Cephalopods and teleosts were not 

identified as significant components of the diets of great hammerheads in either of the 

models, except in liver tissues where cephalopods appeared as a small resource in a portion of 

the population. 

 

4 | DISCUSSION 

 

This study contributes towards the limited information describing the trophic position and 

resource use among sphyrnids (Gallagher & Klimley, 2018) and even fewer assessments for 

great hammerheads (Strong et al., 1990; Cliff, 1995; Chapman & Gruber, 2002). By 
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assessing three stable isotopes across vertebrae, muscle and liver tissues, we have also 

described their ontogenetic foraging variability across various time scales and ultimately their 

role in coastal ecosystems, across the assessed size ranges. These results support several 

interpolative conclusions concerning great hammerheads foraging ecology, although prior to 

their discussion, the sampling methodology warrants consideration. 

 

4.1 | Experimental considerations 

 

The use of bulk tissue stable isotopes to examine resource use requires assumptions. As 

highlighted in the §2, the trophic enrichment factor used to adjust great hammerhead was not 

species-specific and trophic enrichment can also depend on diet content (Hussey et al., 2010). 

However, obtaining species-specific enrichment factors for great hammerheads is unlikely 

given that few aquariums are able to keep sphyrnid sharks (Young et al., 2002) and the mean 

used from multiple species of sharks provided by Hussey et al. (2010) is the most 

parsimonious alternative. Inaccuracies in trophic enrichment factors can in-turn affect the 

results from stable-isotope mixing models (Parnell et al., 2013). Lipid and urea content are 

also known to affect stable-isotope values (Carlisle et al., 2016; Li et al., 2016); however, 

such effects were largely controlled for here using appropriate extractions and mathematical 

corrections when there was a possibility chemical extractions alone were not sufficient. 

While the use of 
34

S facilitated a greater number of sources and provided additional 

information, the enrichment factors are largely unstudied in elasmobranchs and the 0‰ 

trophic enrichment may be inappropriate. Finally, interpreting stable-isotope values should 

always be done with caution, because the isotopes incorporated into tissues can reflect 

movement, latitude, diet and be affected levels of starvation (Hussey et al., 2011a; Doi et al., 

2017; Bird et al., 2018). Stable-isotope analyses alone cannot definitively determine which of 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



these components is driving the measured stable-isotope values and future research should 

verify whether the patterns observed here are related to prey preference.  

 

4.2 | Diet, resource use and short- and long-term patterns 

 

Within the caveats stated above, the results suggest adult great hammerheads are specialists 

feeding primarily on carcharhinid sharks and benthic-associated rays. These results 

corroborate visual records of great hammerheads preying on rays (Strong et al., 1990; 

Chapman & Gruber, 2002) and mesopredator sharks (Roemer et al., 2016). While there are 

records of great hammerheads in South Africa preying on teleosts or of cephalopod beaks in 

their stomachs (Cliff, 1995), the results here suggest this type of resource is unlikely to be 

frequently consumed by great hammerheads off eastern Australia. This outcome may be due 

to the relatively larger sizes of sharks examined here (up to 3.9 m LT) than in previous studies 

(e.g., c. 2–3 m LT in Roemer et al., 2016). It is possible that preference of one prey type over 

another may also change seasonally or smaller great hammerheads rely more on teleosts, but 

great hammerheads > 3 m LT have shifted to apex predator roles. Thus, it is possible that 

large elasmobranchs are more likely to be a significant resource for larger great 

hammerheads. 

Within the large S. mokarran sampled here, there was evidence of seasonal plasticity 

in choice of diet. Specifically, seasonal diet patterns from liver tissues indicative of austral 

summer diet suggest bimodal distributions of diet preference for rays, in some cases 

contributing more than 60%. In the areas where these sharks were caught, migrations of 

Autralian cownose rays are known to occur during the austral summer (Schwartz, 1990) and 

it is possible that some great hammerheads individuals specialise on this type of prey during 

this period.  
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Across longer-temporal scales, stable-isotope values presented here reiterate that great 

hammerhead resource use spans coastal, pelagic and benthic food webs as would be expected 

from apex predators in coastal ecosystems (Bird et al., 2018). The ẟ
34

S values ranged 

between 15 and 20‰, ranges greater than in other studies that have examined coastal species 

of fish (Thomas and Cahoon, 1993) and overlapping coastal and pelagic sea turtles and 

Galeocerdo cuvier (Péron & LeSueur 1822) (Belicka et al., 2012). The ẟ
 34

S values ranged 

across food webs relying on benthic epiphytes (Moncreiff & Sullivan, 2001), seagrasses and 

macroalgae (Belicka et al., 2012) and marine particulate organic matter (Benstead et al., 

2006). By comparison, ẟ
13

C values of great hammerhead tissues ranged between –13 and –

17‰, which are indicative of coastal macrophytes (–14) and pelagic phytoplankton (–18; 

Hobson, 1999), but were narrower than those of coastal and estuarine species such as G. 

cuvier or Carcharhinus leucas (Valenciennes 1839) (Matich et al., 2010; Ferreira et al., 

2017). Great hammerheads occupy a carbon niche breadth similar to that of white sharks 

(Estrada et al., 2006; Kim et al., 2012b) and a wider range of trophic levels (ẟ
15

N values) 

than G. cuvier or C. leucas (Matich et al., 2010; Ferreira et al., 2017). ẟ
34

S value ranges for 

great hammerheads were greater than that of reef-exclusive species of grey reef shark 

Carcharhinus amblyrhynchos (Bleeker 1856) but less than silvertip sharks Carcharhinus 

albimarginatus (Rüppell 1837) that are thought to switch to pelagic resource use seasonally 

(Curnick et al., 2019). These results highlight that the great hammerhead shark is an apex 

predator in multiple food webs off eastern Australia. 

Ontogenetic patterns in resource use of individual hammerhead sharks inferred from 

vertebral samples were relatively stable for ẟ
13

C values but increased with LT for ẟ
15

N values, 

suggesting these sharks relied on a single carbon food web throughout their lives, but 

generally increased their trophic level. The mean (± SD) range of ẟ
13

C values in vertebrae for 

individuals was 1.0 ± 0.6‰. This range aligns with the expected enrichment that would result 
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from the change in trophic level indicated by the mean (± SD) range of ẟ
15

N values of 2.2 ± 

0.7‰ (Hussey et al., 2011b) rather than a change in carbon source. At an individual level, the 

trajectory of increase in trophic level was variable between individuals, with six significantly 

different trajectory types identified from a generalized additive model. Typically, increases in 

trophic level are attributed to increases in gape size (Mihalitsis & Bellwood, 2017), which 

would lead to a linear increase in trophic level with girth (in our case indicated by distance 

from vertebral centra). While this pattern was evident in three of the sharks sampled, a 

similar number of individuals displayed trajectories that were exponential (n = 4) or 

asymptotic (n = 3). These trajectory types suggest that individual trophic levels do not 

directly relate to girth or gape size and may be mediated by individual diet preference, prey 

availability, movement patterns and approaches that limit competition within and between 

species.  

 

4.3 | Use of 
34

S in trophic assessments of elasmobranchs 

 

Beyond increasing the existing knowledge of foraging ecology, this study reiterates the utility 

of 
34

S as an ecological tracer. More specifically, if only 
13

C and 
15

N were included in the 

analyses, teleosts such as C. auratus would have likely contributed more to the model, a 

result that appears to be incorrect once 
34

S was included. In addition, 
34

S adds a reliable 

indicator of pelagic and benthic pathways (Croisetiere et al., 2009) that is difficult to infer 

from other environmental tracers. In the presented mixing model, some ẟ
34

S values were 

below the bounds (more depleted in 
34

S) of the isoscape. This result could be due to missing 

diet sources that are more benthic in nature, again information that could not be obtained 

from 
13

C and 
15

N alone.  
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The ẟ
34

S values outside our isoscape were also possibly caused by incorrect trophic 

discrimination factors, here set to zero as per McCutchan et al. (2003). Unfortunately, there 

has been little work on the trophic enrichment of sulphur stable isotopes and future studies 

might warrant examining trophic enrichment factors of 
34

S across a broader suite of teleosts 

and elasmobranchs. While the cost of incorporating 
34

S into stable-isotope ecology studies is 

high, including this additional tracer is valuable to such studies, especially for species with 

broad distributions that may interact with benthic and pelagic food webs. 

In conclusion, great hammerheads are known to be vulnerable to commercial and recreational 

fishing gears, incurring high associated mortality (approaching 100%) following capture 

(Pérez-Jiménez, 2014; Gulak et al., 2015; Roff et al., 2018). The analyses here indicate that 

they play an important role in linking coastal food webs and, as apex predators in these 

systems, requires urgent conservation to support stability across economically important 

coastal ecosystems.  
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Caption to figs 

FIGURE 1 Sectioned Sphyrna mokarran vertebra showing: vertebral centrum (A), from 

which distances to Dremel samples were measured; corpus calcareum (B), where band counts 

for ageing are usually examined; indent from Dremel sample extraction (C) inside the 

intermedialis. 

 

FIGURE 2 Length, age and sex distribution of Sphyrna mokarran sampled from bather-

protection gillnets deployed off south-eastern Australia during the austral summer–autumn 

2015–2018. F, Female; M, male.  

 

FIGURE 3 Individual patterns in stable isotope values of (a) ẟ
13

C and (b) ẟ
15

N obtained from 

tissue extracted at various distances from vertebral centra of Sphyrna mokarran sampled from 

bather-protection gillnets deployed off south-eastern Australia during the austral summer–

autumn 2015–2018. Different colours represent different individuals. 

Typesetter 

1 Label LH panel (a) and RH panel (b) 

2 Replace 2x x-axis label with single centred label. 

3  

 

FIGURE 4 Trophic level (ẟ
15

N values) patterns across ontogeny (distance from vertebral 

centra, a proxy for size) identified for individual Sphyrna mokarran sampled from bather-

protection gillnets deployed off south-eastern Australia during the austral summer–autumn 

2015–2018. Groups were separated by a generalized additive model (GAM) with an 

individual shark interaction that were significantly different from each other. 
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FIGURE 5 Stable isotope biplots for (a) ẟ
13

C, ẟ
15

N and (b) ẟ
13

C, ẟ
34

S values obtained for 

different individual Sphyrna mokarran tissues (symbols) and from grouped prey sources(┼, 

mean ± SD). Values for diet sources are not adjusted, values for S. mokarran tissues are 

adjusted for trophic enrichment. Standard ellipse areas for S. mokarran tissue types are 

included to make comparing the area of each easier. 

Typesetter 

1 Label LH panel (a) and RH panel (b) 

2 Replace 2x x-axis label with single centred label. 

3  

 

FIGURE 6 (a) Scaled density of outputs of the proportional contribution to muscle (yearly 

dietary patterns) and (b) liver (< 3 month dietary patterns) of various sources to diets of 

Sphyrna mokarran  sampled from bather-protection nets deployed off south-eastern Australia 

during the austral summer–autumn 2015–2018, as modelled from Bayesian stable-isotope 

mixing models. Peaks in the scaled density plot indicate where the most probable 

contributions for each source are (most frequently modelled output). (c), (d) Corresponding 

and boxplots (|, median; □, inter-quartile range; –, 95% range; ●, outliers) to help interpret the 

mean and confidence intervals distributions of contributing diets. 

Typesetter 

1 Label top LH panel (a), top RH panel (b), lower LH panel (c) and lower RH panel (d) 

2 Replace 2x x-axis label with single centred label. 

3 Change: C. limbatus to Carcharhinus limbatus; C. obscurus to Carcharhinus obscurus; 

M. plebejus to Melicertus plebejus; N. gouldi to Nototodarus gouldi; P. auratus to 

Chrysophrys auratus; R. neglecta to Rhinoperon neglecta 
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TABLE 1 Summary outputs of generalized additive models of stable-isotope values in 

relation to distance from vertebral centra for Sphyrna mokarran sampled from bather-

protection gillnets deployed off south-eastern Australia during the austral summer–autumn 

2015–2018. 

Isotope Adjusted R
2 

Explained deviance  GCV Sample size (n)
 

ẟ
13

C 0.946 98.2% 0.107 69 

ẟ
15

N 0.945 98.5% 0.311 69 

GCV, Generalized Cross Validation score. 

 

  

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



(A)(A)

(B)

(C)

Figure 1

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



●●●●●

●●●

●●●●●

●●●●

●●●●

●●●●280

300

320

340

360

20 30 40
Age at death (years)

To
ta

l l
en

gt
h 

(c
m

)

Sex

● F

M

Not identified

Figure 2

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



−15

−14

−13

−12

−11

5 10 15

Distance from vertebral centra (mm)

δ13
C

 (
‰

)

9

10

11

12

13

5 10 15

Distance from vertebral centra (mm)

δ15
N

 (
‰

)

Figure 3

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Logarithmic Exponential increase Stable then progressive increase

Rapid then slower increase Stepped increase Approximately linear

5 10 15 5 10 15 5 10 15

9

10

11

12

13

9

10

11

12

13

Distance from vertebral centra (mm)

δ15
N

 (
‰

)
Figure 4

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Carcharhinus limbatus

Carcharhinus obscurus

Melicertus plebejus

Rhinoptera neglecta

Nototodarus gouldi

10

12

14

−19 −18 −17 −16 −15 −14

δ13C (‰)

δ15
N

 (
‰

) Carcharhinus limbatus

Carcharhinus obscurus

Pagrus auratus

 Melicertus plebejus

Nototodarus gouldi

15

16

17

18

19

20

−19 −18 −17 −16 −15 −14

δ13C (‰)

δ34
S

 (
‰

)

Tissuetype

Liver

Muscle

Source

Pagrus auratus
Rhinoptera neglecta

Figure 5

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



0.00

0.25

0.50

0.75

1.00

D
en

si
ty

 o
f m

od
el

le
d 

ou
tp

ut
s

0.0 0.2 0.4 0.6
Proportion of contribution to diet

Muscle

source

C. limbatus

C. obscurus

M. plebejus

N. gouldi

P. auratus

R. neglecta

0.00 0.25 0.50 0.75
Proportion of contribution to diet

LiverFigure 6

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Using stable isotopes, this study determined that the diets of large great hammerhead sharks 

(Sphyrna mokarran) primarily consist of large sharks and benthic rays and, therefore, that they are 

apex predators in coastal ecosystems. Individual ontogenetic patterns in diet determined from 

vertebral stable isotope analyses suggest at least 6 different individual patterns of diet across the 

individuals sampled. Together, these data suggest great hammerhead sharks span coastal, pelagic 

and benthic food webs. 
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